Thursday, 31 July 2014

Heapsort part 2 (please check the link of pdf of heapsort 1 before reading this )
So if we know what a binary heap is and what are its properties we will go to a standard procedure(read function) called heapify ,to maintain heap property at a particular index i.
For example if we consider our heap doesn't follow heap property at a particular index like:-
  

                        
A call to heapify at index 2 will convert the array into :-


                
Finally the last call will make sure that 10 takes up the correct place:-
             

It may be a bit of intuition for some of experienced persons to catch the recursive element involved in the heapify method but for all the others there is iteration . Yes , good old iteration can do sufficiently as much as recursion in this case of heapify.
pseudo code :
heapify (A,i)
              l=2i    # we can also do l=left_child(i)
             r=2i+1 # we can also do r=right_child(i)
            if l<heap_size(A) and A[l] >A[i]
                  large=l
           else
                 large=r
           if r<heap_size(A) and A[r]>A[large]
                large=r
          if large != i
              exchange (A[i],A[large])
              heapify(A,largest)
In code //
C++
recursive heapify
1.void heapify(int A[1000000],int i,int n)  
2.{  
3. int l=2*i+1;  
4. int r=2*i+2;  
5. int largest;  
6. if(l<n&&A[l]>A[i])  
7. {  
8.  largest=l;  
9. }  
10.         else  
11.         {  
12.          largest=i;  
13.         }  
14.         if(r<n&&A[r]>A[largest])  
15.         {  
16.          largest=r;  
17.         }  
18.         if(largest!=i)  
19.         {  
20.          int temp=A[i];  
21.          A[i]=A[largest];  
22.          A[largest]=temp;  
23.          heapify(A,largest,n);  
24.         }  
25.        }  
    Iterative heapify :-
1.    void itheapify(int A[100],int i,int n)  
2.{  
3.int flag=1;  
4.int t=i;  
5.while(flag==1)  
6.{  
7. flag=0;  
8. int l=2*t+1;  
9. int r=2*t+2;  
10.         int largest;  
11.         if(l<n&&A[l]>A[i])  
12.         {  
13.          largest=l;  
14.         }  
15.         else  
16.         {  
17.          largest=t;  
18.         }  
19.         if(r<n&&A[r]>A[largest])  
20.         {  
21.          largest=r;  
22.         }  
23.         if(largest!=t)  
24.         {  
25.          int temp=A[t];  
26.          A[t]=A[largest];  
27.          A[largest]=temp;  
28.          t=largest;  
29.          flag=1;  
30.         }  
31.        }  
32.        }  
   In Python
1.def heapify (A,i,n):  
2.    l=2*i+1  
3.    r=2*i+2  
4.    if l<n and A[l]>A[i]:  
5.        largest = l  
6.    else:  
7.        largest = i  
8.    if r<n and A[r]>A[largest]:  
9.        largest = r  
10.            if largest != i:          
11.                A[i],A[largest]=A[largest],A[i]
12.                heapify (A,largest,n)  
   
Running Time of heapify:-
It is denoted by a complicated recurrence
T(n) <= T(2n/3) + O(1)
On solving by master theoram it comes to our understanding that running time of heapify is O(log(n))
BUT AS USUAL WE WILL NOT GET INTO THAT
By going with our mere intuition the max number of swaps which need to be performed by heapify will be log(n)
how exactly ??
assume we have the least element at the top so the max number of swaps to be performed will be equal to the height of tree which is log(n) , hence at max heapify will perform log(n) swaps. So the time complexity of heapify will be O(log(n)) :) //hence proved by intuition
     in heapsort 3
how to build heap using heapify
how to perform heapsort
Codechef,Spoj problem Tsort done without using library's sorting function

Running time of heapsort and it's speciality 

Sources :- CLRS01

If you want a Pdf of this post click here

No comments:

Post a Comment